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1 Barycentric Coordinates

Given n points in a space p1, p2, ...., pn, an n − 1 dimensional simplex is the
set of points

{p : p = λ1p1 + λ2p2 + ... + λnpn},
where each λi is between 0 and 1, and they sum to 1. Such a set of points is
called an n−1 dimensional simplex. The set of λi for a point p are called the
barycentric coordinates of the point, because if the coordinates are considered
mass points at the vertices pi , then p is the center of mass.
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Consider the one dimensional case defined by points p1 and p2. Assume
λ1 + λ2 = 1. Then

p = λ1p1 + λ2p2

is a point on the line through the points p1 and p2. And if 0 < λ1 < 1 and
0 < λ2 < 1 then p is between p1 and p2. To prove this we write

p = λ1p1 + λ2p2

= (1 − λ2)p1 + λ2p2

= p1 + λ2((p2 − p1).

So P is the sum of vectors p1 and a multiple of p2 − p1, and so lies on the
line through p1 and p2. If 0 < λ2 < 1 then clearly p is between p1 and p2.

Now consider the case of three points p1, p2, p3. If λ1 + λ2 + λ3 = 1, then
the set of points

p = λ1p1 + λ2p2 + λ3p3

are the points of the plane through p1, p2, p3, (assuming these points are not
collinear). Further, if each of the λi are between 0 and 1, then we get an
interior point of the 2-dimensional simplex (triangle). We may prove this by
writing

p = λ1p1 + λ2p2 + λ3p3

= (1 − λ2 − λ3)p1 + λ2p2 + λ3p3

= p1 + λ2((p2 − p1) + λ3((p3 − p1).

So p is in the plane spanned by the two vectors p2−p1, p3−p1 from the origin
p1.

Now suppose 0 < λi < 1 for i = 1, 2, 3. Then let

q = λ1p1 + λ1p2

and

r =
q

λ1 + λ2

=
λ1

λ1 + λ2

p1 +
λ2

λ1 + λ2

p2.

We have
λ1

λ1 + λ2
+

λ2

λ1 + λ2
= 1.

So r is between p1 and p2, that is, on edge p1p2. Then

p = (λ1 + λ2)r + λ3p3.
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So p is between r and p3, thus interior to the 2-simplex (triangle).
Proposition. Barycentric coordinates are unique.
proof. Suppose

p = λ1p1 + λ2p2 + λ3p3 = λ′
1p1 + λ′

2p2 + λ′
3p3

Then
p = p1 + λ2(p2 − p1) + λ3(p3 − p1)

and
p = p1 + λ′

2(p2 − p1) + λ′
3(p3 − p1).

So
0 = (λ2 − λ′

2)(p2 − p1) + (λ3 − λ′
3)(p3 − p1).

If the coefficients are not zero, then (p2−p1) and (p3−p1) are linearly depen-
dent, and p1, p2, p3 are collinear. Hence the unprimed and primed coordinates
are equal.

Now suppose a triangle p1, p2, p3 is projected to the xy plane with a
transformation T . T is linear so if

p = λ1p1 + λ2p2 + λ3p3

then
Tp = λ1Tp1 + λ2Tp2 + λ3Tp3.

By uniqueness p and Tp have the same barycentric coordinates. Hence the
barycentric coordinates can be computed on the projected image, provided
the projected points are still collinear. Then using these coordinates with
the original points p1p2, p3 we can find a point in the triangle, in the original
simplex.

This can be used to to order triangles back to front in the z direction for
graphics drawing.

Suppose we are given an n-simplex with vertices v0, v1, v2, ..., vn . The
barycentric coordinates of a point p sum to one. If the coordinates satisfy

0 < λi < 1,

then the point is an interior point of the simplex. If any coordinate is nega-
tive, then the point is exterior to the simplex. If

0 ≤ λi ≤ 1,
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then the point is in the interior or on the boundary of the simplex. In the
case

0 ≤ λi ≤ 1,

when a coordinate λj = 0, the point is on the boundary of the simplex
opposite the vertex pj .

To find the barycentric coordinates we may select an arbitrary vertex,
say pn, and solve the linear system

n−1∑
i=0

λi(pi − pn) = p − pn,

for λ0, ..., λn−1. Since the barycentric coordinates sum to 1, this also deter-
mines λn.

Let us apply this to the problem of determining that a point is in a
triangle of the plane. Suppose we are given the triangle vertices

p1 = (1, 2),

p2 = (1, 3),

p3 = (2, 3).

and wish to determine if p = (1.5, 2.6) is in the triangle. Our linear system
is [

(1 − 2) (1 − 2)
(2 − 3) (3 − 3)

] [
λ1

λ2

]
=

[
(1.5 − 2)
(2.6 − 3)

]
.

The solution is
λ1 = .1, λ2 = .4

Then we compute λ3 = .5. Therefore, because all coordinates are between 0
and 1, the point is in the triangle.

The general computation to determine an interior point, requires 11 addi-
tions or subtractions, 6 multiplications, 2 divisions, and 3 comparisons. The
computation may be done as follows.

Let a11 = x1 − x3,a21 = y1 − y3,a12 = x2 − x3,a22 = y2 − y3, and b1 =
x − x3,b2 = y − y3. Then letting D be the determinant

D = a11a22 − a21a12,
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we have

λ1 =
b1a22 − b2a12

D
,

λ2 =
a11b2 − a21b1

D
,

and
λ3 = 1 − λ1 − λ2

See the C procedure bary2 (There is also a Fortran version).

//c+ bary2 barycentric coordinates of a point in the plane

int bary2(double* p,double* p1,double* p2,double* p3,double* lambda){

double d,a11,a12,a21,a22,b1,b2;

int i;

a11=p1[0]-p3[0];

a21=p1[1]-p3[1];

a12=p2[0]-p3[0];

a22=p2[1]-p3[1];

b1=p[0]-p3[0];

b2=p[1]-p3[1];

d=a11*a22-a21*a12;

if(d == 0.){

return(0);

}

lambda[0]=(b1*a22 - b2*a12)/d;

lambda[1]=(a11*b2-a21*b1)/d;

lambda[2]=1.-lambda[0] - lambda[1];

for(i=0;i<3;i++){

if((lambda[i] <= - EPSILON) || (lambda[i] >= 1.+ EPSILON)){

return(0);

}

}

return(1);

}

Let us now consider the problem of computing the barycentric coordinates
of a point P with respect to a triangle in space with vertices P1, P2P3. Let

A1 = P1 − P3,

A2 = P2 − P3,

A = P − P3.

We shall set up a system of orthogonal vectors U1, U2, U3 Let

B3 = A1 × A2,

B2 = B3 × A1.
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Let

U1 =
A1

‖A1‖ ,

U2 =
B2

‖B2‖ ,

U3 =
B3

‖B3‖ = U1 × U2.

Using the ”Back Minus Cab” rule, we have

B2 = −(A1 · A2)A1 + (A1 · A1)A2.

Let P ′ be the projection of P to the plane of the triangle (which is P if P is
already in that plane). Then we have

P ′ = (A · U1)U1 + (A · U2)U2

P1 = (A1 · U1)U1 + (A1 · U2)U2

P2 = (A2 · U1)U1 + (A2 · U2)U2

Then we have the two dimensional case given above where the points P, P1, P2, P3

have coordinates with respect to U1, U2

x = A · U1

y = A · U2

x1 = A1 · U1

y1 = A1 · U2

x2 = A2 · U1

y2 = A2 · U2

and
x3 = 0

y3 = 0

The Fortran subroutine baryt implements this calculation (there is also C
version.)
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c+ baryt barycentric coordinates of a point relative to a triangle in space

subroutine baryt(p,p1,p2,p3,b)

c input:

c p 3d point

c p1,p2,p3 3d points of triangle

c output:

c b barycentric coordinates of the projection

c of p to the plane of the triangle.

c projection(p)=b(1)*p1+b(2)*p2+b(3)*p3

c b(1)+b(2)+b(3) = 1

c the projection is outside the triangle if

c and only if some coordinate is negative

c Reference: Computer Graphics and Geometry, Jim Emery graphic.tex

implicit real*8(a-h,o-z)

dimension p(*),p1(*),p2(*),p3(*),b(*)

dimension a(3),a1(3),a2(3),b1(3),b2(3),u1(3),u2(3)

do i=1,3

a1(i)=p1(i)-p3(i)

a2(i)=p2(i)-p3(i)

a(i)=p(i)-p3(i)

enddo

c1=-dotpr(a1,a2)

c2=dotpr(a1,a1)

do i=1,3

b2(i)=c1*a1(i)+c2*a2(i)

enddo

c3=dotpr(b2,b2)

do i=1,3

u1(i)=a1(i)/sqrt(c2)

u2(i)=b2(i)/sqrt(c3)

enddo

x=dotpr(u1,a)

y=dotpr(u2,a)

x1=dotpr(u1,a1)

y1=dotpr(u2,a1)

x2=dotpr(u1,a2)

y2=dotpr(u2,a2)

d=x1*y2-y1*x2

b(1)=(x*y2-y*x2)/d

b(2)=(y*x1-x*y1)/d

b(3)=1.-b(1)-b(2)

return

end

1.1 Center of Mass

Given n vectors in Euclidean Space, p1, ..., pn, if masses λ1, ..., λn are placed
at these vectors, and

M =
n∑

i=1

λi,
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then

p =
1

M

n∑
i=1

λipi,

is the center of mass of these n mass points, because this is the definition
of the center of mass. If masses sum to 1, then they are the normalized
barycentric coordinates of the point p.

1.2 Triangles and Area Coordinates

Barycentric coordinates can also be called area coordinates or areal coordi-
nates. The barycentric coordinates of a point P inside a triangle divide the
triangle into three internal triangles. It turns out that the barycentric coor-
dinate λi for vertex Pi is the area of the internal triangle opposite Pi divided
by the area of the original triangle. A proof of this given below and is given
in Coxeter p216, which relies on a theorem that the area of a triangle formed
from drawing two lines from a vertex to the opposite side of a triangle is
proportional to the length of the segment formed by the intersection of the
two lines on the opposide side of the original triangle.

So first consider the barycentric coordinates of a point P on a line seg-
ment with end points P1 and P2. Barycentric coordinates are homogenious
coordinates, so only the ratios of the coordinates are completely specified.
The point P is specified by

(m1 + m2)P = m1P1 + m2P2,

where m1, m2 are the barycentric coordinates written here as the masses at
the two vertices. So P is the center of gravity of the masses. We can rewrite
this as

0 = m1(P1 − P) + m2(P2 − P),

so
m1‖P1 −P‖ = m2‖P2 −P)‖,

which expresses the fact that the distances from an endpoint to the center
of mass are inversly proportional to the masses. That is

m1

m2
=

d2

d1
,

where d1, d2 are the distances. This is the mechanical condition for equi-
librium of the beam namely that the net torque is zero.
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Now consider a triangle with vertices P1, P2, and P3. Then we have

(m1 + m2 + m3)P = m1P1 + m2P2 + m3P3,

where m1, m2, m3 are the barycentric coordinates of a point P in the triangle.
Then

(m1 + m2 + m3)P = (m1 + m2)Q + m3P3,

where

Q =
m1P1 + m2P2

m1 + m2

is the barycenter of the masses at P1 and P2. Notice that if A and B are
two vectors such that

C = αA + βB,

where α + β = 1, then

C = (1 − β)A + βB = A + β(B− A)

is on the line joining points A and B. Therefore Q is on the line segment
P1P2 and P is on the line segment QP3. And we now see that the following
ratios are equal

m1

m2

=
d2

d1

=
QP2

P1Q
=

QP2P3

P1QP3

.

The last equality for the ratio of triangle areas follows because these two
triangles QP2P3 and P1QP3 have the same height, and bases d2 and d1

respectively. Continuing

m1

m2
=

QP2P3

P1QP3
=

QP2P

P1QP
=

(QP2P3 −QP2P)

(P1QP3 −P1QP)
=

P2PP3

P1PP3
,

which shows that the barycentric coordinate for Pi is the area of the triangle
opposite Pi. We get a normalized coordinate by dividing by the area of
the whole original triangle. Thus as P approaches Pi the coordinate λi

approaches one, and the other two coordinates approach zero. We have
proved the following proposition.
Proposition. Let P a point, and P1,P2,P3 the vertices of a triangle
P1P2P3. This triangle has clockwise orientation. Let a be the area of
P1P2P3, a1 the area of PP2P3, a2 the area of PP3P1, and a3 the area of
PP1P2, where each area is positive if the vertices go clockwise, and negative
otherwise. Then
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λi =
ai

a
,

are the normalized baracentric coordinates of P with respect to the triangle
P1P2P3. That is

P = λ1P1 + λ2P2 + λ3P3,

and
λ1 + λ2 + λ3 = 1.

1.3 Barycentric Coordinates and the Convex Hull

The convex hull H(A) of a set of points A is the smallest set that contains
all line segments connecting pairs of points of A.

1.4 The Simplex and the Simplicial Complex

2 Algebraic Topology

3 Barycentric Coordinates For Triangular Fi-

nite Elements (fecrrnt.tex)

Note. This document was not published in TEX, and only the first part
has been fully converted here. It was written a word processing language
of my design called ”script” and was written in Pascal. Spaces were left
for mathematical symbols, which were entered by hand, as was typical in
those ancient days. The fecurrent finite element program itself was written
in Fortran.

Barycentric coordinates are useful in triangular finite elements.
Let α1, α2, and α3 be points in a two dimensional projective space. Let

α be an arbitrary point in the space. Then α is a one dimensional subspace
of some three dimensional vector space. We wish to assign coordinates to
points of the projective space. Suppose p1, p2, p3 are representative vectors
of the three basic projective points α1, α2, and α3 respectively. We suppose
that the vectors are linearly independent. Let p be in α. Then p has a
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set of coordinates with respect to the three linearly independent vectors.
However, these coordinates will vary depending upon how we select p1, p2,
p3 and p from the respective one dimensional subspaces. However, suppose
we identify a fourth projective point αu that we take to have unit coordinates
λ1 = 1, λ2 = 1, λ3 = 1. Now because a projective point is a one dimensional
subspace, any constant multiple of these coordinates will have to represent
the same projective point. That is the unit point will also have coordinates,
say, λ1 = 5, λ2 = 5, λ3 = 5. The unit point forces us to select a certain set of
basis vectors. These are vectors p1, p2, p3 so that if pu ∈ αu, then

pu = cp1 + cp2 + cp3,

for some number c. Then p1, p2, p3 are well defined, (except they could all be
scaled by the same number. Then the coordinates of any α are well defined
by, if p ∈ α, then

p = λ1p1 + λ2p2 + λ3p3.

And so these are the well defined projective coordinates defined by the pro-
jective space reference points α1, α2, α3 and the unit point αu.

We shall introduce a special projective coordinate system. Let p1, p2,
and p3 be the vertices of a triangle. The baracentric coordinate system is
a projective coordinate system with reference points [p1], [p2], [p3] and unit
point

(p1 + p2 + p3)/3.

(p1 + p2 + p3)/3 is the center of gravity (the barycenter) of the triangle. If p
is an arbitrary point, then

p = λp1 + λ2p2 + λ3p3

We may assume that the coordinates are scaled so that

λ1 + λ2 + λ3 = 1.

The barycentric coordinates are also vector space coordinates in the three
dimensional vector space with basis vectors p1, p2, p3. Here we shall think of
them in that way. We will deduce some relationships for the coordinates that
hold for permutations of the basis vectors p1, p2, p3. So let σ be a permutation
of 1,2,3. (see fecrrnt.tex) for a continuation of this.

Then
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P − P = (P − P ) + (P − P )

so

x − xx − xx − x

=
y − yy − yy − y

Let $D$ be the determinant of this matrix. Then

0 0 1 1 1 1

D = x - x x - x x = x x x

y - y y - y y y y y

.sp

1 1 1

= sign( ) x x x

y y y

.sp

Using Cramer’s rule we find

.sp

= ((x y - x y ) + (y -y )x + (x - x )y)/D

.sp

Let

.sp

a = x y - x y

.sp

b = y - y

.sp

c = x -x

.sp

Then

.sp

= (1/D )(a + b x + c y)

.sp

Note that is well defined: Suppose ’1 = 1, and

’2 = 2. Then sign( ’) = -sign( ) and

.sp

a = -a ,b = -b , c = -c

.sp

so =

.sp

We introduce 3 even permutations

.sp

1 2 3 1 2 3 1 2 3

: , : , :

1 2 3 2 3 1 3 1 2

.sp

Then

.SP

(x,y) = (1/D)(a + b x + c y)
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.sp

where

.sp

a = x y - x y

.sp

b = y - y

.sp

c = x - x

.sp

a = x y - x y

.sp

b = y - y

.sp

c = x - x

.sp

a = x y - x y

.sp

b = y - y

.sp

c = x - x

.sp

and

.sp

1 1 1

D = x x x = (x -x )(y -y )-(x -x )(y -y )

y y y

.sp

The magnitude of D is twice the area of the triangle.

The interpolation function in the triangle is

.sp

u = u + u + u

.sp

and

.sp

b b b

grad(u) = (1/D)( u + u + u )

c c c

.sp

An outward normal vector to an edge opposite vertex i is

.sp

b

n = -(sign(D)/L )

c

.sp

where L is the edge length.

.sp

The normal derivative at the edge opposite vertex i is

.sp

u/ n =grad(u) n

.sp

3

= -(sign(D)/DL ) (b b + c c )u

j=1

.sp

The nodal flow at vertex i is

.sp

N = - u/ n dL
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.sp

where the integration is done on the two half edges

meeting at vertex i. Then

.sp

3

N = (1/(2 D ) (b b + c c )u

j=1

.sp

Also because u is harmonic

.sp

N = u/ n dL

A

.sp

.fo

where A is the line connecting the midpoints of the

edges incident at nodei, and so can be thought

of as the flow from the node.

.SP

.ce

THE LINEAR NODAL EQUATIONS

.SP

The functional F given in (16) is to be minimized over

the finite dimensional space of linear interpolation

functions. Suppose there are m elements and n nodes.

Let E be the jth element. Define a functional F on

the jth element by

.nf

.sp

F (u) = @( u/ x) + ( u/ y) - 2 uh

E E

.sp

We have

.sp

m

F(u) = F (u)

j=1

.sp

Let i = n(j,k) be the global index of node k of element j.

We have

.sp

F / u = 2 @ u/ x / u ( u/ x) + u/ y / u ( u/ y)

E

.sp 2

- 2 u/ u h

E

.sp

Now locally we have

.sp

F / u = F / u

.sp

u/ x = (1/D)@b u + b u + b u

.sp

u/ y = (1/D)@c u + c u + c u

.sp

/ u ( u/ x) = b /D

.sp

/ u ( u/ y) = c /D
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.sp

u/ u =

.sp

Thus

.sp

.sp

F / u =

.sp

(2 /D ) @(b b + c c )u + (b b + c c )u + (b b + c c )u

E

.sp

- 2 h

E

.sp

3

= (2 /D)( D /2) (b b + c c )u - 2 h

q=1

.sp

Define the jth element stiffness matrix by

.sp

K = ( / D )(b b + c c )

.sp

We denote by I the integral

.sp

I = h

which depends only on the given boundary normal derivative h.

Then locally

.sp

3

F / u = K u - 2I

q=1

.sp

Note that if E = 0, then I = 0, and also

.sp

3

K u = N

q=1

.sp

which is the local nodal flow. Now let i be a global label.

Then

.sp

n

F/ u = K u - 2 I

l=1 n(j,k)=i n(j,k)=i

n(j,q)=l

.sp

Let

.sp

K = K and I = I

n(j,k)=i n(j,k)=i

n(j,q)=l

.sp

K is the global stiffness matrix. Then

.sp

n

f/ u = K u - 2I (**)
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l=1

.SP

note that

.sp

n

(1/2) K u

l=1

.sp

.fo

is the sum of the local nodal flows in the triangles that

are adjacent to node i. It is the sum of the current

flow out of the polygon, which is formed by the lines

connecting the midpoints of the edges incident at node i.

.sp 10

INTERNAL NODE BOUNDARY NODE

.SP

The boundary conditions consist of specified voltage

values and specified normal derivatives given by the

functions g and h respectively. g specifies the values

at certain boundary nodes while h specifies values of

I at the other boundary nodes. Of course, these

nodal boundary values will give only approximations

to the functions g and h. A necessary condition

for the functional to have a minimum is that

.sp

F/ u = 0

.sp

for each unspecified node i. From (**) we will

then have p linear equations in p unknowns where

p is the number of unspecified nodes. The

solution u satisfies the natural boundary condition

in the sense that if i is a node that is in

then

.sp

.nf

n

2 u/ n dL = K u = 2I = 2 hdL

C l=1 C

.sp 10

.fo

Then u/ n is an approximation to h in a neighborhood of

each

node.

.sp

When we include the unspecified nodes we get the system

.sp

.nf

u I

K - 2 = 0

u I

.sp

.fo

which is a sytem of n equations in the n unknowns

consisting of the p unknown voltage values and the

n-p unknown current values. And we see that these

later values will be the nodal flows of the

solution function at the boundary nodes that are
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in .

.sp

.ce

.pa
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