
 

 

 

 

 

 

SIMULATING BROWNIAN MOTION 

 

ABSTRACT 

This exercise shows how to simulate the motion of single and multiple particles in one and two dimensions using 

Matlab. You will discover some useful ways to visualize and analyze particle motion data, as well as learn the 

Matlab code to accomplish these tasks. Once you understand the simulations, you can tweak the code to simulate 

the actual experimental conditions you choose for your study of Brownian motion of synthetic beads. These 

simulations will generate the predictions you can test in your experiment. In each section, Matlab code shown in the 

box to the left is used to generate the plot or analysis shown on the right. Please report in your lab book all values 

you obtain and answer to questions. To use the code, copy it from the box on the left, launch the Matlab 

application, and paste the code into the Matlab Command Window.  

 



I) Simulating Brownian motion and Single Particle Trajectories  

This exercise shows how to simulate the motion of a single particle in one and two dimensions. Brownian 

motion in one dimension is composed of a sequence of normally distributed random displacements. The randn 

function returns a matrix of a normally distributed random numbers with standard deviation 1. The two 

arguments specify the size of the matrix, which will be 1xN in the example below. The first step in simulating 

this process is to generate a vector of random displacements.  

The commands to do this are shown below. N is the number of samples to generate.  

N = 1000; 

displacement = randn(1,N); 

plot(displacement); 

 

 

II) Distribution of Displacements 

Have a look at the distribution of the randomly generated displacements. The hist command plots a histogram 

of the values. The second argument - 25 - specifies that Matlab should divide the values into 25 bins. 

hist(displacement, 25); 

 

 

III) Convert displacements to position 

Now we have some appropriate random displacements. Their sum represents a particle trajectory in 1 

dimension. The Matlab function cumsum returns the cumulative sum of a vector. The following commands take 

the cumulative sum of displacement and save the result in a vector called x. 

x = cumsum(displacement); 

plot(x); 

ylabel('position'); 

xlabel('time step'); 

title('Position of 1D Particle versus Time'); 

 
 

 



IV) Two dimensional particle simulations 

Extending this to two dimensions is simple. Since all directions are (assumed to be) equivalent, all we need to 

do is generate two vectors of random displacements. The vector of displacements saved in a Matlab structure 

called particle. x and y position vectors are stored in members of the structure. This data could also have been 

saved as a 2xN matrix. Using a structure has the important advantage that a meaningful name can be assigned to 

each member. This good practice makes your code much more readable. 

particle = struct(); 

particle.x = cumsum( randn(N, 1) ); 

particle.y = cumsum( randn(N, 1) ); 

plot(particle.x, particle.y); 

ylabel('Y Position'); 

xlabel('X Position'); 

title('position versus time in 2D'); 
 

V) Compute the Displacement Squared  

The displacement squared is equal to the x coordinate squared plus the y coordinate squared. Since the 

simulated particle always start at (0,0), it is unnecessary to subtract off the initial position (as will be necessary 

with the data you gather in the lab). 

dsquared = particle.x .^ 2 + particle.y .^ 2; 

plot(dsquared); 

 

% The dot caret (.^) operator raises each element of a 

matrix to a power. 

 

 

VI) Theoretical Value of D 

The theoretical value of the diffusion coefficient, D, is given by 
3
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where T = temperature (Kelvin), 

kB = Boltzmann's constant, eta = viscosity, and d = particle diameter. 

Note that the units of D are length squared divided by time. See the lab write up for more information. Let's 

compute D for a 1 micron particle in water at 293 degrees Kelvin. 



d    = 1.0e-6;              % diameter in meters 

eta  = 1.0e-3;              % viscosity of water in SI units (Pascal-seconds)  

kB   = 1.38e-23;            % Boltzmann constant 

T    = 293;                 % Temperature in degrees Kelvin 

D    = kB * T / (3 * pi * eta * d) 

ans =   4.2902e-013 

So far, we have been looking at simulated particles with a mean squared displacement of 1 unit per time 

interval. To accurately model a real particle, it is necessary to adjust the distribution of random displacements to 

match the experimental conditions. 

 

VII) A more realistic particle -- Getting the Units Right 

According to theory, the mean squared displacement of the particle is proportional to the time interval, 

, where r(t) = position, d = number of dimensions, D = diffusion coefficient, and 

tau = time interval. To generate the correct distribution, the output from randn (which has a standard normal 

distribution) must be scaled by the factor k. 

tau = .1;   % time interval in seconds 

time = tau * 1:N;   % create a time vector for plotting 

k = sqrt(2*D*tau); 

dx = k * randn(N,1); 

dy = k * randn(N,1); 

x = cumsum(dx); 

y = cumsum(dy); 

dSquaredDisplacement = (dx .^ 2) + (dy .^ 2); 

 squaredDisplacement = ( x .^ 2) + ( y .^ 2); 

plot(x,y); title('Particle Track of a Single Simulated Particle'); 

 

VIII) Displacement Squared Plot 

Theory predicts that the displacement should increase in proportion to the square root of time. The theoretical 

value of displacement squared is plotted with a thick black line. Since displacement is expected to increase with 

the square root of time, displacement squared is a straight line. With only a single particle and a small number of 

samples, deviation from the line can be quite large.  



clf; 

hold on; 

plot(time, (0:1:(N-1)) * 2*k^2 , 'k', 'LineWidth', 3);      % 

plot theoretical line 

 

plot(time, squaredDisplacement); 

hold off; 

xlabel('Time'); 

ylabel('Displacement Squared'); 

title('Displacement Squared versus Time 

for 1 Particle in 2 Dimensions'); 

 

Q1. Does the thoritical line match approximately with your simulated displacement? 

IX) Estimating D from the Simulated Data 

Solving for D gives
2
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.The best estimate of the value of D from the simulated data is: 

simulatedD = mean( dSquaredDisplacement ) / ( 2 * dimensions * tau ) 

ans =  4.2192e-013 

Q2. Is this value enough reliable? Why or why not? Compare it with the theoretical one. 

 

X) Uncertainty in the Estimate 

The likely error of this measurement decreases as the square root of the number of samples. This will be 

discussed in more detail later. 

standardError = std( dSquaredDisplacement ) / ( 2 * dimensions * tau *sqrt(N)) 

actualError = D - simulatedD 

standardError =   1.3162e-014 

actualError   =   7.1019e-015 

 

XI) Systematic Error -- Bulk Flow in the Solvent 

Sometimes, evaporation or uneven heating of the solvent will cause a flow to occur on the slide you are 

observing. We can model this easily. The following code models a flow with a magnitude 0.5 k in the x 

direction and 0.1 k in the y direction. 



dx = dx + 0.2 * k; 

dy = dy + 0.05 * k; 

x = cumsum(dx); 

y = cumsum(dy); 

dSquaredDisplacement = (dx .^ 2) + (dy .^ 2); 

squaredDisplacement = ( x .^ 2) + ( y .^ 2); 

simulatedD = mean( dSquaredDisplacement ) / ( 2 * dimensions * tau ) 

standardError = std( dSquaredDisplacement ) / ( 2 * dimensions * tau * sqrt(N) ) 

actualError = D - simulatedD 

plot(x,y);  

title('Particle Track of a Single Simulated Particle with Bulk Flow'); 

simulatedD =   4.2926e-013 

standardError =  1.3694e-014 

actualError =  -2.3859e-016 

 

 

XI) Displacement Squared in the Presence of Bulk Flow 

Notice how the plot of displacement squared diverges from the theoretical value. It has a distinct quadratic 

component. The magnitude of this error increases dramatically with time. This suggests that the error caused by 

bulk flow can be minimized by using the shortest possible sampling period. But there's a catch. As you increase 

the sampling rate, the amount of noise from the motion tracking algorithm goes up. A tenth of a second works 

pretty well for the particles you will observe in the lab. If you have time, take a few movies at different rates to 

see the effect.  

clf; hold on; 

plot(time, (0:1:(N-1)) * 2*k^2 , 'k', 'LineWidth', 3);     

 % plot theoretical line 

plot(time, squaredDisplacement); 

hold off; 

xlabel('Time'); 

ylabel('Displacement Squared'); 

title('Displacement Squared versus Time with Bulk Flow'); 

 

Q3. Try to enhance the magnitude of the bulk flow. Does the trajectory still look like to a Brownian motion? 

Is the estimated diffusion coefficient still significant? 

 

 



XII) Simulating Multiple Particles  

When you take your data in the lab, you will make movies of many particles. You will use a Matlab program to 

extract particle tracks from these movies. Because particles drift out of view and go in and out of focus, most 

movies will be about 5 seconds long at a sample rate of 10 Hz or so. Let's simulate this. 

XIII) Using a For Loop to Generate Multiple Data Sets  

A for loop is the key to generating multiple particle simulations. The results of the simulations are stored in a 

cellular array of structures called particle. For example, particle{3} refers to a structure containing the results of 

simulation number 3. particle{3}.D is the estimated value of D for simulation number 3. It is not necessary to 

understand this code in depth. But do yourself a favor and have a look. 

particleCount = 10; 

N = 50; 

tau = .1; 

time = 0:tau:(N-1) * tau; 

particle = { };             % create an empty cell array to hold the results 

for i = 1:particleCount 

    particle{i} = struct(); 

    particle{i}.dx = k * randn(1,N); 

    particle{i}.x = cumsum(particle{i}.dx); 

    particle{i}.dy = k * randn(1,N); 

    particle{i}.y = cumsum(particle{i}.dy); 

    particle{i}.drsquared = particle{i}.dx .^2 + particle{i}.dy .^ 2; 

    particle{i}.rsquared = particle{i}.x .^ 2 + particle{i}.y .^ 2; 

    particle{i}.D = mean( particle{i}.drsquared ) / ( 2 * dimensions * tau ); 

    particle{i}.standardError = std( particle{i}.drsquared ) / ( 2 * dimensions * tau * sqrt(N) ); 

end 

XIV) SimulateParticle Function 

That's a lot of typing. Fortunately, all of the commands to generate multiple particle tracks have been combined 

into in a single function called SimulateParticles. (This function is on our server in Analysis folder). If you are 

interested in how the function is implemented, type edit SimulateParticles.m to have a look at the m-file for this 

function.  

help SimulateParticles 

particle = SimulateParticles(N, particleCount, tau, k); 

usage: out = SimulateParticles( N, particleCount, tau, k ) 

%N is the number of samples , particleCount is the number of particles, Tau is the sample period, k is the standard 

deviation of dx and dy returns a cellular array of length particleCount 

 



XV) Look at the Results 

The following code plots all of the generated particle tracks on a single set of axes, each in a random color. 

clf; hold on; 

for i = 1:particleCount 

    plot(particle{i}.x, particle{i}.y, 'color', rand(1,3)); 

end 

xlabel('X position (m)'); 

ylabel('Y position (m)'); 

title('Combined Particle Tracks'); hold off; 

 

 

XVI) Displacement Squared 

The following plot shows displacement squared versus time for all of the particles. The ensemble average of all 

the displacements is shown with a thick black line. The theoretical value of displacement squared is plotted with 

a thick blue line. Since displacement is expected to increase with the square root of time, displacement squared 

is a straight line in the plot. 

% compute the ensemble average 

rsquaredSum = zeros(1,N); 

for i = 1:particleCount 

    rsquaredSum = rsquaredSum + particle{i}.rsquared; 

end 

ensembleAverage = rsquaredSum / particleCount; 

% create the plot 

clf; hold on; 

plot(time, (0:1:(N-1)) * 2*k^2 , 'b', 'LineWidth', 3);     % plot 

theoretical line 

plot(time, ensembleAverage , 'k', 'LineWidth', 3);          % plot 

ensemble average 

legend('Theoretical','Average','location','NorthWest'); 

for i = 1:particleCount 

    plot(time, particle{i}.rsquared, 'color', rand(1,3));   % plot each 

particle track 

end 

xlabel('Time (seconds)'); 

ylabel('Displacement Squared (m^2)'); 

title('Displacement Squared vs Time'); hold off; 

 



XVII) Estimated Value of D 

This plot shows the computed value of D for each simulation with error bars. A thick blue line indicates the best 

overall estimate of D (the average of the D value from each simulation) along with error bars in green.  

clear D e dx; 

% extract the D value from each simulation and place them all into 

a single matrix called 'D' 

for i = 1:particleCount 

    D(i) = particle{i}.D; 

    dx(i,:) = particle{i}.dx; 

    e(i) = particle{i}.standardError; 

end 

% compute the estimate of D and the uncertainty 

averageD = mean(D) 

uncertainty = std(D)/sqrt(particleCount) 

% plot everything 

clf; hold on; 

plot(averageD * ones(1,particleCount), 'b', 'linewidth', 3);         

 % plot estimated D 

plot((averageD + uncertainty) * ones(1,particleCount), 'g-', 

'linewidth', 1);  

 % plot upper error bar 

plot((averageD - uncertainty) * ones(1,particleCount), 'g-', 

'linewidth', 1);  

 % plot lower error bar 

errorbar(D,e,'ro');                                                      

 % plot D values with error bars 

 

xlabel('Simulation Number'); 

ylabel('Estimated Diffusion Coefficient'); 

title('Estimated Diffusion Coefficient with Error Bars') 

legend('Average Value of D', 'location', 'NorthWest'); 

hold off; 

 

averageD  =  4.2886e-013 

uncertainty =  2.3294e-014 

 

Q4. Does this value correspond better to the theoretical D than the one obtained with single simulation?  

 



XVIII) Fancy Statistics and Plots 

This section looks at the statistical properties of the simulated data in more detail. In particular, it discusses: 

 Uncertainty in the estimate of the mean value of a random variable from a population of samples  

 The effect of squaring a normally distributed random variable  

 The assumption of statistical independence of samples  

 

XIX) A More Perfect Distribution 

Did you notice that the distribution of random displacement values in the second section looked a little 

lopsided? Even with 1000 samples, there can be some noticeable deviations from the ideal distribution. A 

million samples looks quite a bit closer to the ideal. 

hist(randn(1,1e3),25) 

xlabel('Value'); 

ylabel('Frequency'); 

title('Histogram of Values for 1000 Samples of randn'); 

 

 

 

 

hist(randn(1,1e6),100) 

xlabel('Value'); 

ylabel('Frequency'); 

title('Histogram of Values for 1000000 Samples of randn'); 

 

 

 

XX) Sampling Uncertainty 

This lab requires you to make an estimate of the average value of a random variable (actually, the square of a 

random variable) from a population of samples of that variable. The uncertainty in your estimate decreases with 

the square root of the number of samples, N. (That is, the standard error = 1/sqrt(N).) 

This concept is illustrated in the following plot. To create the plot, fifty populations of N random samples are 

created for each value of N from 1 to 100. The mean value of each sample population is plotted with an 'x' 

versus N. The uncertainty appears to decrease as 1/sqrt(N) as expected. About two thirds of the values fall 

between the error bars (plotted in dark black). 



Matlab note: check out the nested for loops used to create the plot. 

clf; hold on; 

for i= 1:100 

    for j = 1:50 

        y = randn(1,i); 

        m = mean(y); 

        plot(i,m,'x'); 

    end 

end 

plot(1:100, 1./sqrt(1:100), 'k', 'LineWidth', 2);  

  % plot upper error bar in dark black 

plot(1:100, -1./sqrt(1:100), 'k', 'LineWidth', 2);  

 % plot lower error bar in dark black 

hold off; 

xlabel('Population Size (N)'); 

ylabel('Population Mean'); 

title('Population Mean of Normally Distributed Random 

Variable versus Population Size'); 

 

 

XXI) What Happens when you Square a Random Variable? 

We did not estimate D in the simulations from the x and y displacements directly. Instead, we computed the 

mean squared value of dx and dy. What is the distribution of the resulting value? Adding the squares of two 

normally distributed random variables results in a chi-squared distribution (with two degrees of freedom) 

whose mean value equal to the sum of the variances of each variable. Here is what the chi-squared distribution 

looks like: 

dx = randn(1,1e6); 

dy = randn(1,1e6); 

drSquared = dx .^ 2 + dy .^ 2; 

mean(drSquared) 

var(dx) + var(dy) 

clf; 

hist(drSquared,100); 

title('Chi Squared Distribution (2 DOF), 1000000 

Samples'); 

ans =  1.9982 

ans =  1.9982 

 

http://en.wikipedia.org/wiki/Chi_squared


XXII) 100 Years of BIO Lab Data in 1 Second 

So does the uncertainty of the squared and summed behave as expected? The following plot is a simulation of 

5000 data sets - 50 at each value of N just as above. (This is what a plot of all the data from students doing the 

BIO lab for the next hundred years might look like. Some lazy groups decided to use very low values of N.) 

clf; 

hold on; 

for i= 1:100 

    for j = 1:50 

        dx = randn(1,i); 

        dy = randn(1,i); 

        m = mean( dx .^ 2 + dy .^ 2 ); 

        plot(i,m,'x'); 

    end 

end 

plot(1:100, 2 + 2./sqrt(1:100), 'k', 'LineWidth', 2);  % 

plot upper error bar in dark black 

plot(1:100, 2 - 2./sqrt(1:100), 'k', 'LineWidth', 2);  % 

plot lower error bar in dark black 

hold off; 

xlabel('Population Size (N)'); 

ylabel('Population Mean'); 

title('Population Mean of Chi Squared (2 DOF) 

Distributed Random Variable versus Population Size'); 

 

 

 

 

 

 

XXIII) Auto Correlation - A Closer Look at the Data 

The simulations so far have assumed that we are in the overdamped limit, or the inertia-less regime. This 

assumption makes generating simulated trajectories very easy - all you have to do is add up a bunch of properly 

distributed random numbers. Of course, just because something is convenient doesn't mean it's true. 

There are many statistical tests for independence and normality. Auto and cross correlation are a good place to 

start testing for independence. Autocorrelation looks for a relationship between a variable and its past or future 

values. Cross correlation looks for a relationship between two variables. Matlab has a built in function to 

compute auto and cross correlations called xcorr. 

By construction, the simulated displacements are independent. The change in position at one time should 

exhibit no relationship at all to the change at any other time. This can be verified with xcorr. If x is a vector, 

xcorr(x) returns the correlation of x with itself for all possible offsets. The length of the resulting autocorrelation 

sequence is 2N+1. The middle value always stands out because x correlates perfectly with itself when there is 



no offset. Specifying the option 'coeff' causes the xcorr function to normalize this value to exactly 1 --perfect 

correlation. 

Also notice that the autocorrelation sequence is symmetric about the origin. 

clf; 

c = xcorr(particle{1}.dx, 'coeff'); 

xaxis = (1-length(c))/2:1:(length(c)-1)/2; 

plot(xaxis, c); 

xlabel('Lag'); 

ylabel('Correlation'); 

title('Particle 1 x-axis Displacement Autocorrelation'); 

 
 

XIV) Cross Correlation 

With two vector arguments, xcorr(x,y) returns a cross correlation matrix. The cross correlation can be used to 

test the relationship (or lack thereof) between one particle's trajectory and another's. If two particles move 

independently, the cross correlations should be very small. The code below computes the cross correlation 

between the x displacements of particle simulations number 1 and 2. 

clf; 

c = xcorr(particle{1}.dx, particle {2}.dx, 'coeff'); 

xaxis = (1-length(c))/2:1:(length(c)-1)/2; 

plot(xaxis, c); 

xlabel('Lag'); 

ylabel('Correlation'); 

Title('Particle 1, 2 x-axis Displacement Cross 

Correlation');  

Q5. The correlation function might be powerful tool to check if a motion corresponds to a Brownian motion. 

By the way, you will use this function during the analysis session. How do you judge a motion Brownian or not 

using this latter? 

 

XV) Matlab Tricks  

Matlab can generate (and plot) an amazing amount of data. For example, the xcorr function can compute the 

auto and cross correlations of a large set of data values. If A is an MxN matrix, xcorr(A) returns a size 2*M-1 x 

N^2 matrix whose columns contain the cross-correlation sequences for all combinations of the columns of A. 

The football (ellipsoid) shape of the data is a result of the way that the data is windowed when computing the 

correlation. 



%create an array whose columns contain the dx for each particle 

for i = 1:particleCount 

    allDx(:,i) = particle{i}.dx'; 

end 

% compute all possible auto and cross correlations 

c = xcorr(allDx, 'coeff'); 

% plot the results 

clf; hold on; 

for i=1:size(c,1) 

    plot(xaxis, c(:,i),'color',rand(1,3)); 

end 

hold off; 

xlabel('Lag'); 

ylabel('Correlation Coefficient'); 

title('All Possible Auto and Cross Correlations in the x Dimension'); 

 

 

 

 

 

 

 

XVI) A Correlated Trajectory 

So what does the autocorrelation sequence look like for a trajectory that is not generated from independent 

samples? In the following example, the displacement at each time interval depends in part on the displacement 

in the last interval plus a random number. The autocorrelation is not nearly as sharp as the one generated by 

independent random samples. 

x = zeros(1,N); 

c = 0.80; % degree of correlation; step  = randn(1,N); 

x(2) = randn(); 

for t=2:N 

     x(t) = (c * x(t-1)) + ((1-c)*step(t)); 

end; clf; 

plot(xaxis, xcorr(x, 'coeff')); 

xlabel('Lag'); 

ylabel('Correlation Coefficient'); 

title('Autocorrelation'); 

 

 


